协作AI系统(CAISS)旨在与共同空间中的人类合作,实现共同目标。这一关键环境产生可能危害人类的危险情况。因此,建立具有符合要求,具体域标准和法规的强保证的这些系统具有最大的重要性。到目前为止,迄今为止仅报告了一些规模的影响,因为许多工作仍有待管理可能的风险。我们在这方面确定了新出现的问题,然后我们向我们的愿景报告,以及我们的多学科研究团队组成的软件/系统和机电一体化工程师的进展,以开发才能开发风险驱动的保证程序。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译
We outline our work on evaluating robots that assist older adults by engaging with them through multiple modalities that include physical interaction. Our thesis is that to increase the effectiveness of assistive robots: 1) robots need to understand and effect multimodal actions, 2) robots should not only react to the human, they need to take the initiative and lead the task when it is necessary. We start by briefly introducing our proposed framework for multimodal interaction and then describe two different experiments with the actual robots. In the first experiment, a Baxter robot helps a human find and locate an object using the Multimodal Interaction Manager (MIM) framework. In the second experiment, a NAO robot is used in the same task, however, the roles of the robot and the human are reversed. We discuss the evaluation methods that were used in these experiments, including different metrics employed to characterize the performance of the robot in each case. We conclude by providing our perspective on the challenges and opportunities for the evaluation of assistive robots for older adults in realistic settings.
translated by 谷歌翻译
Nucleolar organizer regions (NORs) are parts of the DNA that are involved in RNA transcription. Due to the silver affinity of associated proteins, argyrophilic NORs (AgNORs) can be visualized using silver-based staining. The average number of AgNORs per nucleus has been shown to be a prognostic factor for predicting the outcome of many tumors. Since manual detection of AgNORs is laborious, automation is of high interest. We present a deep learning-based pipeline for automatically determining the AgNOR-score from histopathological sections. An additional annotation experiment was conducted with six pathologists to provide an independent performance evaluation of our approach. Across all raters and images, we found a mean squared error of 0.054 between the AgNOR- scores of the experts and those of the model, indicating that our approach offers performance comparable to humans.
translated by 谷歌翻译
The proliferation of radical online communities and their violent offshoots has sparked great societal concern. However, the current practice of banning such communities from mainstream platforms has unintended consequences: (I) the further radicalization of their members in fringe platforms where they migrate; and (ii) the spillover of harmful content from fringe back onto mainstream platforms. Here, in a large observational study on two banned subreddits, r/The\_Donald and r/fatpeoplehate, we examine how factors associated with the RECRO radicalization framework relate to users' migration decisions. Specifically, we quantify how these factors affect users' decisions to post on fringe platforms and, for those who do, whether they continue posting on the mainstream platform. Our results show that individual-level factors, those relating to the behavior of users, are associated with the decision to post on the fringe platform. Whereas social-level factors, users' connection with the radical community, only affect the propensity to be coactive on both platforms. Overall, our findings pave the way for evidence-based moderation policies, as the decisions to migrate and remain coactive amplify unintended consequences of community bans.
translated by 谷歌翻译
Photo-identification (photo-id) is one of the main non-invasive capture-recapture methods utilised by marine researchers for monitoring cetacean (dolphin, whale, and porpoise) populations. This method has historically been performed manually resulting in high workload and cost due to the vast number of images collected. Recently automated aids have been developed to help speed-up photo-id, although they are often disjoint in their processing and do not utilise all available identifying information. Work presented in this paper aims to create a fully automatic photo-id aid capable of providing most likely matches based on all available information without the need for data pre-processing such as cropping. This is achieved through a pipeline of computer vision models and post-processing techniques aimed at detecting cetaceans in unedited field imagery before passing them downstream for individual level catalogue matching. The system is capable of handling previously uncatalogued individuals and flagging these for investigation thanks to catalogue similarity comparison. We evaluate the system against multiple real-life photo-id catalogues, achieving mAP@IOU[0.5] = 0.91, 0.96 for the task of dorsal fin detection on catalogues from Tanzania and the UK respectively and 83.1, 97.5% top-10 accuracy for the task of individual classification on catalogues from the UK and USA.
translated by 谷歌翻译
One of the major challenges in Deep Reinforcement Learning for control is the need for extensive training to learn the policy. Motivated by this, we present the design of the Control-Tutored Deep Q-Networks (CT-DQN) algorithm, a Deep Reinforcement Learning algorithm that leverages a control tutor, i.e., an exogenous control law, to reduce learning time. The tutor can be designed using an approximate model of the system, without any assumption about the knowledge of the system's dynamics. There is no expectation that it will be able to achieve the control objective if used stand-alone. During learning, the tutor occasionally suggests an action, thus partially guiding exploration. We validate our approach on three scenarios from OpenAI Gym: the inverted pendulum, lunar lander, and car racing. We demonstrate that CT-DQN is able to achieve better or equivalent data efficiency with respect to the classic function approximation solutions.
translated by 谷歌翻译
The notion of concept drift refers to the phenomenon that the distribution generating the observed data changes over time. If drift is present, machine learning models may become inaccurate and need adjustment. Many technologies for learning with drift rely on the interleaved test-train error (ITTE) as a quantity which approximates the model generalization error and triggers drift detection and model updates. In this work, we investigate in how far this procedure is mathematically justified. More precisely, we relate a change of the ITTE to the presence of real drift, i.e., a changed posterior, and to a change of the training result under the assumption of optimality. We support our theoretical findings by empirical evidence for several learning algorithms, models, and datasets.
translated by 谷歌翻译
In modern business processes, the amount of data collected has increased substantially in recent years. Because this data can potentially yield valuable insights, automated knowledge extraction based on process mining has been proposed, among other techniques, to provide users with intuitive access to the information contained therein. At present, the majority of technologies aim to reconstruct explicit business process models. These are directly interpretable but limited concerning the integration of diverse and real-valued information sources. On the other hand, Machine Learning (ML) benefits from the vast amount of data available and can deal with high-dimensional sources, yet it has rarely been applied to being used in processes. In this contribution, we evaluate the capability of modern Transformer architectures as well as more classical ML technologies of modeling process regularities, as can be quantitatively evaluated by their prediction capability. In addition, we demonstrate the capability of attentional properties and feature relevance determination by highlighting features that are crucial to the processes' predictive abilities. We demonstrate the efficacy of our approach using five benchmark datasets and show that the ML models are capable of predicting critical outcomes and that the attention mechanisms or XAI components offer new insights into the underlying processes.
translated by 谷歌翻译